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1. SUMMARY 
 
A three � storey building structure from elastic material is modeled using Lexan and its 
behavior under an external static loading is examined. Using the photoelastic method we 
inspect the stresses at shear walls and the experimental results are compared with the 
corresponding results of a computational model by finite element method application which 
was developed to describe the problem. 
 
 
2. INTRODUCTION 
 
The experimental model is a three storey (level) 3D building, having three flat shear walls 
and one of a �Π� � shape, used for the elevator, at every level. The framework plan of the 
typical level of the building is shown in Fig. 1. Point �A� represents the point in witch the 
external loading is applying. Points �B� and �C� at levels 3 and 2, respectively are the exact 
points where the displacement is measured. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 1: Framework plan of the typical level 



 

 

Photoelastic analysis is widely used for problems in which stress or strain information is 
required for extended regions of the structure. It provides quantitative evidence of highly 
stressed areas and peak stresses at surface and interior points of the structure.  
 
 
3. FINITE ELEMENT ANALYSIS METHOD 
 
For the finite element analysis of the building we used a four node quadrilateral thin flat shell 
element, which has six degrees of freedom (dof) per node. The sixth dof is obtained by 
combining a membrane element with a normal rotation θz, the so-called the drilling degree of 
freedom, and a discrete Kirchhof plate element. The drilling dof is introduced via the 
variational formulation. The variational formulation employs enforcement of equality of the 
independent rotation field and skew-symmetric part of the displacement gradient. 
In small displacement models of flat shell elements, the effects of membrane and bending 
strain are not coupled in the energy expression within the elements. Coupling occurs only on 
the interelement boundary. Therefore, we consider a flat shell element as combination of a 
plane stress element and a plate bending element. In the combinded element subject to 
membrane and bending actions, the displacements prescribed for �in-plane� forces do not 
affect the bending deformations, and vice versa. 
The drilling degree of freedom may be physically interpreted as a true rotation of the vertex 
bisecting the angle between adjacent edges of the finite element. A scematic of the angle 
bisector and associated partial derivatives in element displacements is shown in Fig. 2. 
 

 

 

 

 

 

 

 

 

 

Figure 2: Physical interpretation of the drilling degree of freedom 

The drilling degree of freedom is defined as: 
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Flat shell finite elements may be formulated through the use of a variational formulation that 
includes an independent rotation field for the drilling degree of freedom. The variational 
formulation is due to Hughes and Brezzi [1, 2]. It employs the skew-symmetric part of the 
stress tensor as a Lagrange multiplier to enforce the equality of independent rotations with the 
skew-symmetric part of the dispacement gradient. Taylor subsequently combined the 
variational formulation with an Allman-type interpolation for the dispacement field with an 
independent interpolation field of  rotation [3]. 
The variational formulation suggested by Hughes and Brezzi [1, 3], can be described as 
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where 
_ _

,  u Φ  are trial displacements and rotations of the region Ω, f is the external general 
forces, and ρ is a penalty. The corresponding variational formulation is: 
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The first term in the variational equations produces the element stiffness matrix, 
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The plate bending component of the shell element corresponds to the 12 dof discrete 
Kirchhoff quadrilateral plate element (DKQ), and is derived in detail using the discrete 
Kirchhoff technique. The DKQ element formulation is based on the discretization of the 
strain energy. The model neglects the transverse shear strain energy. 
 

 

4. FINITE ELEMENT ANALYSIS MODEL 
 
The corresponding model is shown in Fig. 3a. It consists of  3496 nodes and 3346 elements. 
We have tried several mesh sizes and in this paper we present a medium one. The deformed 
shape of the model is shown in Fig. 3b. The model�s elastic isotropic material has a Young 
modulus of E = 280000N/cm2, and a Poisson rate of v = 0.36. 

 

Figure 3a: Finite element analysis model, 3b: Deformed shape of the building 

 
 
 
5. EXPERIMENTAL ARRANGEMENT 
 
The specimen was made of Lexan of thickness 6 mm. This material is suitable for both 
photoelastic and caustic optical method techniques. According to the photoelastic method the 
specimen is placed between the plates of a circularly polarized field, so that isochromatic 
fringes patterns can be taken. These fringes give the principal stress difference of an existing 
stress field. The experimental model is shown in Fig. 4.  
The external load is applied at point �A�. The starting value is zero and gradually reaches 
600N when the joining between the parts of the specimen starts failing. We have also 
measured the displacements at points �B� and �C� shown in Fig. 1. 



 

 

 

 
 

Figure 4: Experimental model 
 
 
 
6. EXPERIMENTAL RESULTS – COMPARISON 
 
The isocrhromatic pattern is related to the pricipal stresses by the stress � optic law:  

 1 2 max2 C N
b
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where σ1, σ2 are algebraically the maximum and minimum principal stresses, respectively, 
τmax is the maximum shear stress, C is the stress � optic coefficient and N is the relative 
retardation of rays forming the pattern, also known as isochromatic fringe order.  
In terms of the isochromatic pattern, the isochromatic fringe order, N, at a point is 
specifically defined as the number of fringes that pass through the point during the 
application of the external loads. The isochromatic pattern of this experimental model is 
shown in Fig. 5. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Isochromatic pattern 

Στο Σχήµα ## µετράµε 4 ισοχρωµατικούς κύκλους. ∆εδοµένου ότι η οπτική σταθερά του 
Lexan είναι 16.42N/cm η διαφορά κυρίων τάσεων προκύπτει ότι είναι 109.47 N/cm2. 
Εξετάσαµε τον πυρήνα και στα τοιχεία υπογείου του τελευταίου ορόφου. Στις παρακάτω 
εικόνες  
that belong to the elevator and the flat shear wall at the top of the framework plan of the 
typical level (Fig.1). At the next photographs we present the behavior of the flat shear wall at 
the top of the floor plan, as the value of the external loading is being increased from zero to 



 

 

600N. The direction of the principal stresses as they are obtained by the finite element 
analysis are shown in Fig. 7. 

 

Figure 6: Photoelastic pattern for externaly applied load equal to a) 0N, b) 200N, c) 400N and d) 600N 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Principal stresses F.E.A. 



 

 

The comparison between the displacements mesured at point B (Level 3), C (Level 2) and 
those from the finite element analysis are presented at Fig. 8b. 

 

 

 

 

 

 

 

 

 

Figure 8a: Experimental principal stresses - F.E.A. , 8b: Experimental displacements - F.E.A. 

 

7. CONCLUSIONS – FUTURE WORK 
 
The concluding result is that the specific element type can be used to model the experimental 
specimen in a very satisfactory degree, which is not far enough from a real life building 
structure. The main assumption that the building�s behavior falls into the elastic area will be 
soon raised as we have already proceeded developing the plastic formulation of the specific 
element and we shall present it soon.  
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