
Introduction
When faced with the challenge of investigating

time-dependent nonlinear phenomena of shell struc-
tures with the finite element method a major con-
straint arises which is the high computational cost
involved in the simulations. Higher order shell ele-
ments have been successfully proposed in the past
for linear analysis. However, the extension of this
type of shell elements to the nonlinear range and es-
pecially to time-dependent problems is not straight-
forward. Isoparametric finite elements based on
higher-order interpolation functions and multiple
quadrature loops can prove very expensive and
cumbersome when applied to large and complex
multilayered shells.

Hence, the development of a simple plate and
shell finite element including transverse shear de-
formation, capable of engineering accuracy, compe-
tent in the study of intricate nonlinear phenomena
and adaptable to many types of material systems in-
cluding isotropic, sandwich, laminated, composite
and hybrid structures remains a challenging task. A
shell finite element that has been proved to have all
the above-mentioned characteristics in static linear
and nonlinear problems is the TRIC shell element
Argyris et al. (1994).

The aim of this paper is to formulate a consistent
mass matrix that includes both translational and rota-
tional inertia in order to test the efficiency of the
TRIC element in linear and nonlinear dynamic prob-
lems.

The mass matrix
The computation of the elemental mass matrix

necesitates the estimation of matrix ω containing the
modal functions. More specifically, the displacement
vector u must be expressed as a function of the natu-
ral modes. Then the global elemental mass matrix
can be established via
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where α is the transformation matrix from the local
natural coordinate system of each element to the
global Cartesian coordinate system and ρ is the den-
sity of the material.

The modal matrix ω can be derived by invoking
kinematic and geometric arguments. Similarly to
static analysis, the rotational inertia forces resulting
from antisymmetric deformation are assumed un-
coupled from the other forces, and as such they are
treated independently. The derivation of the part of
the modal matrix that contains the rigid body modes
is straightforward and it can be graphically depicted
in Figure 1 Argyris et al. (1994).

The second component of the modal matrix is re-
lated to the axial straining modes (γtα, γtβ and γtγ)
along the sides of the triangular element. From Fig-
ure 2, it can be concluded that the displacements of
node Γ, for example, is given by:
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Figure 1

Figure 2
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and finally:
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or:
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Similar expressions can be derived for the other two
nodes leading to the following expressions for the
inplane displacements of the element due to the axial
straining modes along the side of the triangle:
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where ζα, ζβ, ζγ, are the area coordinates of the trian-
gular element.

By setting any of the axial straining modes equal to
1 and the others equal to zero the corresponding mo-
dal functions can be obtained.

For the derivation of the expressions of the symmet-
ric and antisymmetric modal functions, the follow-
ing expression of the vertical (out of the plane) dis-
placement is used, Argyris et al. (2000):
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where ψsα, ψsβ and ψsγ are the natural symmetric
bending modes and ψAα, ψAβ and ψAγ are the natural
antisymmetric bending modes.

Thus, for example, for ψsα=1 and all the other
modes equal to 0 equation (12) becomes:

w= γβα ζζl
2
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(13)

Since:
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the expressions for u, v become:
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In a similar way, the expressions of the other
symmetric and antisymmetric modal functions can
be deduced.

Finally, the expressions for the natural azimuth
modes are graphically depicted in Figure 3, Argyris
et al (1994).

Symbolic computation is employed in order to
carry out, in a clear way, the tedious but otherwise
straightforward matrix multiplications of Equation 1.
Consequently, all integrals are evaluated in an exact
manner using the formula:
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The principle of virtual work in dynamics
The principle of virtual work for static (linear and

nonlinear) in terms of the elastic Cartesian stresses
and strains reads:
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where σ, ε denote the stress and elastic strain vec-
tors, respectively; u is the displacement vector; pV,
pS are the distributed body and distributed surface
forces, respectively, and R is the vector of the con-
centrated forces or moments.
For dynamic analysis, the inertia and damping

forces must be included in equation (17). The work
produced by these forces can be written as:
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Figure 3

where µ is the local damping coefficient and r the
vector of the nodal displacements.

Equation (17) modified with the introduction of
the inertia and damping terms reads for a finite ele-
ment e:
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or
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where Ke, Me, Ce and Re(t) are the elemental stiff-
ness, mass, damping matrices and the loading vector
respectively.

Numerical examples
Numerical examples are presented to test and ver-

ify the proposed mass matrix derived for the TRIC
shell element. The examples are linear dynamic
problems. The results are compared to those pro-
duced by the commercial program SOFiSTiC for
static and dynamic analysis of structures.

Plate with constant distributed load.
The first example examines the dynamic response

of a plate which is fixed along one of its sides under
a constant distributed vertical load.

The geometry of this shell example is shown in Fig-
ure 4

Figure 4

The width of this cantilever plate is 3m and the
length is 4m. The thickness of the plate is considered
to be 40cm. The modulus of elasticity is taken
E=30000000kPa and the Poisson ratio equal to 0.2.
The constant over time distributed load is equal to
40kN/m.

The plate is divided to 96 elements with 63 nodes as
shown in Figure 4.

The results that were produced by the TRIC element
are practically identical to those produced by the



SOFiSTiC program (see Figure 5) proving the accu-
racy of the proposed mass matrix formulation.

Plate with time dependent distributed load.
The same plate as in the previous example is solved
with distributed load that diminishes linearly with
time and becomes zero at time t=0.5sec.

The results are shown in Figure 6 and are again co-
incident to those produced by SOFiSTiC.
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Comparison TRIC - SOFiSTiC
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Figure 6

Shallow shell with concentrated load.
The next test example is a shallow shell with a con-
centrated load in the middle. Due to the symmetry of
the structure along both axes only one quarter of the
shell is examined (Figure 7). The concentrated load
is equal to 1kN at time t=0 s and remains constant
until time t=0.05 s when it becomes zero. The time
step used is t=0.0005 s and the dynamic analysis is
performed until time t=0.1 s. The results of the
analysis are shown in Figure 8 where the perform-
ance of the TRIC element is compared with the
quadrilateral shell elements of the commercial codes
SOFiSTiC and NASTRAN. By comparing the re-
sults of the two commercial programs and the TRIC

element it can be concluded that the results produced
by the TRIC element are very satisfactory.

Figure 7

Comparison Tric - SOFiSTiC - NASTRAN
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